
2024/01/27 1/7

Thesis Summary
This  document  summarises  the  Master's  thesis  titled  PCB  Component  Placement  using
Reinforcement Learning (RL). First, the topic is introduced with a brief motivation and problem
description. Next, the literature review outcomes are described before investigating state-of-the-art
approaches.  Lastly, our novel placement methodology and an accompanying solution are presented.

Printed Circuit Boards (PCBs) are at the centre of all electronic systems and provide the surface
onto  which  electronic  components  are  soldered  and  the  routing  infrastructure  for  wiring  them
together. They are three-dimensional structures with many internal copper layers along which wires
are etched spanning both horizontally and vertically. The PCB design process involves translating
the logical topology of a circuit (e.g. a schematic) into a manufacturable geometrical representation
and is divided into component placement followed by routing. Automated placement techniques
have had some success [1, 2], but they often lack the intuitive understanding of human engineers.
Partly for this reason, such tools did not gain traction, and presently it is a predominantly manual
process.  The thesis  investigates the current state-of-the-art  [3] and proposes a novel  end-to-end
machine-learning approach to optimise the placement of components on a PCB. We aim to create an
AI-assisted workflow that enhances productivity by allowing designers to focus on higher-level
tasks, reducing design time while leveraging the differentiating benefits of customised solutions.

The placement  task  accepts  a  circuit  netlist  describing  the  logical  representation  of  the  circuit
accompanied by geometrical information of the individual components (e.g. dimensions) [4]. The
task is at least NP-Complete [5] and is concerned with identifying the best spatial location and
orientation for all the components given solution constraints (e.g. no overlaps) and optimisation
goals (e.g. minimised wirelength) [6]. Placement techniques can be classified as constructive and
iterative.  The former order the circuit netlist according to a criterion (e.g. component area) and
sequentially place the constituents onto an empty layout region. The latter starts with a randomly
initialised placement that is iteratively improved until a terminal condition is reached.

PCB and Integrated Circuit (IC) placement processes share many commonalities, but problem size
is one aspect they greatly differ. As a result, research on the former is sparse [7, 8] and limited
primarily to particular placement co-optimisation tasks [9-12]. By contrast, since IC (digital) design
is only feasible with automated tools, it has a thriving research community with contributions from
academia [14-19] and industry [20-23]. Since the 1960s, four placement categories have emerged,
namely,  partitioning-based  methods  inspired  by  graph  theory  [24,  25],  black-box  optimisation
methods [2, 26-29], analytic placement [16, 17, 30-38] and presently, learning-based solutions [3,
39, 40]. Metaheuristics proved effective while offering flexibility in defining the objective function.
However, driven by stochastic decision processes, they were not feasible on circuits exceeding 1e5
elements. Analytic placement appeared as a more scalable alternative and is presently considered
state-of-the-art [14, 15, 22]. It requires a differentiable objective that is optimised using numerical
techniques. Recently hybrid [39, 40] and end-to-end solutions [3] for floorplanning using RL have
been proposed, albeit they are still in their infancy. RL offers attractive solutions to such problems,
particularly for its ability to represent vast state spaces and generalise to unseen similar ones. 

The  thesis  initially  investigates  the  state-of-the-art  constructive  placement  methodology  by
Mirhoseini et al.  [3] and proposes a novel formulation for iterative placement. Mirhoseini et al.
proposed using a neural network to represent the problem state in a compressed manner. They offer
a novel edge-based graph neural network to automatically extract features from the circuit netlist
and,  together  with  task-relevant  metadata,  they  predict  a  placement  quality  metric  as  a  linear
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combination of wirelength, congestion and density. After removing the final prediction layer, the
authors encoded the problem state and used PPO [48] to train RL policies for predicting placement
probabilities  over a  discretised layout  region.  Using this  approach as  a  guideline,  we trained a
neural network to predict circuit wirelength and subsequently trained policies using TRPO [47] and
PPO in a similar way. Using unseen circuits, we achieved an accuracy of 69.5% for the graph-level
wirelength prediction task, albeit subsequent RL policies were significantly outperformed by 41%
after establishing a baseline with Simulated Annealing (SA) [42, 43].  While the authors provided
innovative ideas, we were concerned about important details as well as their evaluation procedures.
Recent literature shared similar concerns [40] and even debunked some of the original claims [50].

Learning  from the  previous  limitations,  we  formulated  the  iterative  PCB placement  task  as  a
Markov Decision Process (MDP). First,  we studied its mechanics in a constrained environment
(single-component  approach),  then  pooled  our  findings  and  adapted  the  setup  to  yield  general
solutions  (multi-component  approach).  Concerning  the  former,  the  agent  represents  a  single
component. The goal, starting from an arbitrary location on the PCB, is to orient the component
within a fixed optimised layout while minimising wirelength and avoiding overlap in the terminal
state. The observation space mainly captures the perceived surroundings and direction information
related to movement. We propose two fundamentally distinct reward signals to motivate the desired
behaviour. First, we attempt to mimic the expert by using expert positioning as the goal. Secondly,
we motivate self-improvement using problem-related performance metrics. We extensively study
the problem by investigating a variety of RL algorithms [46-50], discrete and continuous action
spaces, and environment features such as optimal episode length, step size and replay buffer size,
especially  in  cases  of  adaptive  reward  signals.  Our  overarching aim was  to  learn  fundamental
placement techniques applicable to unseen circuits. While we learned a lot from these experiments,
we  concluded  that  expert-generated  data  introduce  inconsistencies  that  prevent  generalisation.
These inconsistencies leaked into our problem setup through the reward signal when mimicking the
expert and through the observation space arising from the fixed portion of the circuit.

To address data inconsistencies, we adapted the training process to suit a multi-component setup
that simultaneously places all components except one. In other words, we lock a single component
to serve as an anchor (typically the main IC) and for every step in the episode, we invoke the policy
on  all  the  moveable  components  (all  except  the  anchor),  each  time  sampling  an  updated
environment  state.  This  training  process  collects  highly  diverse  data  points  because  every
component  in  the  circuit  contributes  a  different  perspective  into  the  problem.  In  pursuit  of
generalisation, we use a dataset of nine circuits sampled from real-world applications having up to
12 components. We train on six and evaluate on the remaining three. We establish a baseline using
SA [42, 43] and compare placements in terms of post-routing wirelength [44] after 600 iterations.
For each circuit,  we average four evaluations starting from different conditions.  Over the three
unseen circuits, our best configuration outperforms SA by up to 21%. Additionally, we observed
that optimised placements generated by our method can converge over an order of magnitude faster,
suggesting that leveraging experience over stochastic decision-making is beneficial. Quantitatively
the policies exhibit fundamental placement techniques (i.e. witnessed taking actions to minimise
wirelength) and emergent collaborative or competitive features conditional on the reward scheme.

The thesis proposed a novel MDP formulation for iterative placement and delivered a general RL
solution. Although further optimisations and additional key features are necessary, this work offers a
promising direction towards automating PCB component placement. A demonstration is available
on GitHub, while the complete thesis and associated publication are available on my website. 

https://www.github.com/lukevassallo/rl_pcb.git
https://www.lukevassallo.com/wp-content/uploads/2024/01/Learning-Circuit-Placement-Techniques-through-Reinforcement-Learning-with-Adaptive-Rewards.pdf
https://www.lukevassallo.com/wp-content/uploads/2023/09/automated_pcb_component_placement_using_rl_msc_thesis_v2_1_lv.pdf
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