
Learning Circuit Placement Techniques through
Reinforcement Learning with Adaptive Rewards

Luke Vassallo , Josef Bajada
Dept. of Artificial Intelligence

University of Malta
Msida, Malta

{luke.vassallo.13, josef.bajada}@um.edu.mt

Abstract—Placement is the initial step of Printed Circuit Board
(PCB) physical design and demands considerable time and domain
expertise. Placement quality impacts the performance of subse-
quent tasks, and the generation of an optimal placement is known
to be, at the very least, NP-complete. While stochastic optimisation
and analytic techniques have had some success, they often lack
the intuitive understanding of human engineers. In this study,
we propose a novel end-to-end Machine Learning (ML) approach
to learn fundamental placement techniques and use experience
to optimise PCB layouts efficiently. To achieve this, we formulate
the PCB placement problem as a Markov Decision Process (MDP)
and use Reinforcement Learning (RL) to learn general placement
techniques. The agent-driven data collection process generates
highly diverse and consistent data points sufficient for learning
general policies without expert knowledge under the guidance
of an adaptive reward signal. Compared to state-of-the-art sim-
ulated annealing approaches on unseen circuits, the resulting
policies trained with TD3 and SAC, on average, yield 17% and
21% reduction in post-routing wirelength. Qualitative analysis
shows that the policies learn fundamental placement techniques
and demonstrate an understanding of the underlying problem
dynamics. Collectively, they demonstrate emergent collaborative
or competitive behaviours and faster placement convergence,
sometimes exceeding an order of magnitude.

Index Terms—circuit layout, placement, reinforcement learning

I. INTRODUCTION

PCBs are essential to modern electronics, providing a sur-
face for soldering components and the routing infrastructure
that connects them. PCB design translates a circuit’s logical
topology into a physical, manufacturable representation. This
complex process involves precisely locating and orienting com-
ponents on a specified board, and routing connections in line
with the circuit schematic, all while adhering to manufacturing
constraints. It’s an iterative, demanding task requiring deep
knowledge of components’ operational constraints and physics.

PCB physical design has many commonalities with that of
Integrated Circuits (ICs). Driven by the reliance on advanced
automated Computer-Aided Design (CAD) tools for the fabri-
cation of dense, high-performance ICs, the latter has garnered
increased attention recently [1]. ML contributions are also
becoming increasingly significant [1], demonstrating potential
in assisting designers, reducing time to market, and enhancing
design quality. However, PCB layout is predominantly a manual
task, with automation research largely confined to addressing
specific challenges [3], [5], [14].

Our goal is to use RL to learn effective placement techniques
for solving the PCB component placement task end-to-end.
Leveraging experience to optimise circuit layouts while demon-
strating an understanding of the fundamental problem dynamics
are the most distinctive aspects of this work. Source code,
datasets and pre-generated results are available on GitHub:
https://www.github.com/lukevassallo/rl pcb.git.

II. BACKGROUND

The input to the placement task is a circuit representation,
such as a netlist. The netlist contains comprehensive informa-
tion about each component, including their sizes, pin locations,
and how they connect to their neighbours. The netlist can be
represented as a hypergraph H = (V,E), where the nodes
V = {v1, ..., vn} are component pins and the hyperedges
E = {e1, ..., em} correspond to nets. A net e = {vi, ..., vj},
where |e| ≥ 2, connects two or more nodes. Each node belongs
to a component, given by the function c : V → C, where C is
the set of all netlist components. As placement is proven to be
NP-Complete [15], guaranteeing optimality becomes infeasible
as circuit complexity increases. Hence, this task is typically
formulated as a multi-objective optimisation problem in terms
of overlap and wirelength, with the aim of minimising them.

In our approach, we utilise two formulations for wire-
length to promote distinct placement behaviours. The Half-
Perimeter Wirelength (HPWL) corresponds to the sum of all
half-perimeter lengths of all quadrilaterals, each enclosing all
nodes of each hyperedge. HPWL is defined in Equation 1,
where (xi, yi) are the Cartesian coordinates of vi ∈ V .

HPWL =
∑
e∈E

max
{vi,vj}⊆e

|xi − xj |+ max
{vi,vj}⊆e

|yi − yj | (1)

Since each component can have more than one pin, v(a, e) =
{v ∈ e|c(v) = a} represents all the nodes in e ∈ E
that also belong to the same component a ∈ C. cp(e) =
{{c(vi), c(vj)}|{vi, vj} ⊆ e ∧ c(vi) ̸= c(vj)} gives all the
distinct unordered component pairs in net e ∈ E. The minimum
distance between two components a and b for net e is defined in
Equation 2, while Equation 3 defines the Euclidean Wirelength
(EW), which sums all the minimum distances between distinct
components of each net.

https://orcid.org/0000-0001-8465-6573
https://orcid.org/0000-0002-8274-6177
https://www.github.com/lukevassallo/rl_pcb.git

d(a, b, e) = min
vi∈v(a,e),vj∈v(b,e)

√
(xi − xj)2 + (yi − yj)2 (2)

EW =
∑
e∈E

∑
{a,b}∈cp(e)

d(a, b, e) (3)

III. RELATED WORK

State-of-the-art placement techniques are driven by IC design
due to their intractability to manual placement and are based
on non-linear analytical techniques [8]. Unlike in IC design
[2], [8], PCB physical design frequently employs meta-heuristic
techniques like genetic algorithms [4], swarm intelligence
[3], and simulated annealing [9], [12]. This preference arises
because PCB circuit netlists are relatively smaller, rendering
stochastic optimisation feasible and negating the need for
complex differential cost function formulation. Placement co-
optimisation receives more attention in literature, focusing on
aspects like thermal management and power efficiency [3],
electromagnetic compatibility [14], and the effects of parasitics
on power converter efficiency [5].

Machine Learning (ML) is significantly changing the process
of Electronic Design Automation (EDA) flow in three key
areas [1]. Firstly by predicting performance metrics (e.g. wire-
length, routability, power), thereby replacing time-consuming
measurement processes with estimates. Secondly leveraging
knowledge from past data for more efficient design space ex-
ploration [10], and finally AI-assisted workflows that automate
entire steps [11]. Contemporary works tackling floorplanning
or placement combine stochastic optimisation with ML [17]
and RL [10]. An end-to-end approach was taken by [11] where
the constructive floorplanning task was formulated as an MDP,
and RL was subsequently used to place netlist elements onto
a discretised IC canvas sequentially. However, their method
lacks generalisation, particularly evident from the fine-tuning
process prior to evaluation. Independent researchers also noted
similar observations [10], and recent work has shown that the
performance gains did not hold on open datasets [18].

IV. METHOD

We frame the iterative PCB component placement problem as
an MDP [16]. In our approach, an agent represents a component
on the PCB that can perceive the surrounding environment and
take actions to adjust its position or orientation. The agent’s
objective is to minimise wirelength, while avoiding overlap as
it reaches an equilibrium position. One component in the netlist
is locked and serves as an anchor, while all other components
are movable and subject to the policy in each episode step.
Therefore for a netlist of C components, this results in C − 1
movable components and thus, the policy is invoked C − 1
times during a single episode step.

A. Observations

An observation is a 23-element vector consisting of three fea-
ture sets; 16 elements capture the perceived surroundings, four
elements capture direction information related to movement,
and the remainder is the component’s position and orientation.

We employ image processing techniques on a stack of
grayscale images representing the circuit netlist to understand
the immediate surroundings. Each component is assigned a
distinct layer, drawn with a resolution of 0.5mm. Separately,
we generate a set of masks around the current component
by drawing a circle with a diameter 1.5 times its longest
edge, centred and divided into eight segments. As illustrated
by Figure 1a, a segment i serves as the basis for two masks:
one for overlap detection, MOi, and the other for line-of-sight
determination, MLi, that is the detection of non-overlapping
objects in the vicinity of the component. The overlap mask
MOi for segment i is calculated in Equation 4a by applying
pixel-wise binary AND operation between the circle segment,
Si and the current component, a. The line-of-sight mask MLi

comprises the pixels in segment Si that do not correspond to
the overlap mask MOi and is calculated by Equation 4b with
a pixel-wise binary XOR between Si and MOi.

MOi = Si & a (4a)

MLi = Si ⊕MOi (4b)

A bitwise AND operation is performed between the individ-
ual masks and all layers, excluding the current component, to
derive the perception information. The mathematical operations
for these calculations are respectively described in Equations 5a
and 5b, where Cj ,∀j ∈ N denotes the set of layers containing
neighbour nodes of current node a. In Figure 1b, we present
an example where a nearby component overlaps with the
current component. The overlap contribution is in orange, while
the non-overlapping contribution is in blue. These operations
result in a normalised 16-element vector, with eight elements
from overlap measurements and the remaining quantifying the
presence of surrounding objects.

POi =
(MOi & Cj ,∀j ∈ N)∑

MOi
(5a)

PLi =
(MLi & Cj ,∀j ∈ N)∑

MLi
(5b)

Directional information is captured in two vectors of form
(r, θ), termed goal-oriented and cluster-oriented. The goal-
oriented vector points in the direction that minimises wirelength
and is derived from all the pin-to-pin connectivity vectors. It
is denoted in Cartesian form, (xa, ya), by Equation 6 where
a denotes the current component, and N its neighbours and
exemplified in Figure 1c. The black lines associated with pin 1
of component R1 are part of a multi-pin net. In this case, the
resultant vector (drawn in red) is computed, and its magnitude
is divided by the number of vectors involved in its calculation to
maintain relatively small numerical values. Pin 2 of component
R1 is a point-to-point connection; therefore, the vector is used
as is. The blue vector results from adding the resultant vectors
in red and yields the first feature.

The blue arrow in Figure 1d illustrates the cluster-oriented
vector computed between the current component’s centre and
the group’s centroid (x̄, ȳ). The cluster’s centroid is calculated
over the current component and all its neighbours according to

(a) Perception Masks (b) Masking Example (c) Goal-oriented Vector (d) Cluster-oriented Vector (e) Action Space

Fig. 1: 1a depicts the mask generation from circle segments and 1b illustrates how overlapping (orange) and nearby non-
overlapping (blue) features are captured. Figures 1c and 1d capture directional information relating to the overall direction of
movement and identification of neighbouring components. 1e illustrates the continuous action space as a vector triplet.

the netlist. The feature vector (rg, θg) is computed by Equation
7, between the current node’s position (xa, ya) and the centroid.
It provides information about the agent’s relative position to its
neighbours.

(xa, ya) =
∑
e∈E

∑
vi∈v(a,e)

1

cp(e)

∑
vj(N,e)

(xi − xj), (yi − yj) (6)

rg =
√

(xi − x̄)2 + (yi − ȳ)2, θg = tan−1

(
(yi − ȳ)2

(xi − x̄)2

)
(7)

Component information is the final piece of the observation
that includes the Cartesian position (xa, ya), normalised by the
board size and its orientation θa ranging between −πc to πc.

B. Actions

A continuous action space is selected because of its ability
to describe movement in any direction and offers granular
control over a discrete representation. Figure 1e contains three
elements accounting for component translation and orientation.
The former is defined as an (r, θ) vector with the magnitude,
r, taking unit values, while the direction, θ, is specified in
the range of 0c to 2πc. The component’s orientation, ϕ, is
also a continuous value in the range [0, 1], albeit is interpreted
discretely according to Equation 8.

orientation =

0◦ when 0 ≤ ϕ < 0.25

90◦ when 0.25 ≤ ϕ < 0.5

180◦ when 0.5 ≤ ϕ < 0.75

270◦ otherwise

(8)

C. Rewards

The reward signal conveys the designer’s goals to the agent
through evaluative feedback after each episode step and consists
of two elements. The first term is an early termination penalty
that comes into effect only if the agent deviates from the
problem scope. The quality of the action, directly linked to
the overall solution quality, is captured by the second part. The
agent can position the component anywhere on the Cartesian
plane, representing the layout area, without any restrictions
imposed by the environment. However, moving outside the

board region triggers a premature episode termination with
a penalty proportional to the remaining steps, as we aim to
keep the agent’s operations within the board. Thus, the episode
lengths vary based on the agent’s ability to operate within
the board region, and as discussed in section IV-F, the agent
learns this behaviour and begins completing full episodes after
75k steps. The early termination penalty, ζ, is formulated in
Equation 9, where T = 200 is the total episode steps, t ≤ T
denotes the agent’s last step, and st is the state at t. pr = 8 is
a constant that scales the penalty for stopping before T .

ζ =

{
pr(T − t) if st is terminal
0 otherwise

(9)

Credit is immediately assigned after each episode step ac-
cording to Equation 10, which linearly combines the EW Wt

(prioritising the agent over its cluster), HPWL Ht (rewarding
clusters sharing common nets), and overlap Ot (ensuring a
legal, overlap-free layout). Ot is detailed in Equation 11c,
with POi representing the normalised overlap contribution of
segment i, as defined in Equation 5a. The tangent function
aggressively rewards actions leading to overlap-free wirelength
improvements, constrained within [0, π

2.1
c]. Differing from [11],

overlap is not a hard constraint, allowing initial placement over-
laps but incentivising their avoidance as the solution emerges
in later stages. Weights n, m and m on these metrics control
the policy’s learned behaviour, balancing between independent
component optimisation (EW emphasis) and collaborative net
length minimisation across clusters (HPWL emphasis).

rt = tan
(
nWt +mHt + p(1−Ot)

n+m+ p
· π

2.1

)
− ζ (10)

The success of learning general behaviour partly arises
from rewarding the agents indiscriminately across layouts. The
wirelength contribution differs between clusters of components,
and therefore to consistently reward the agent’s actions, the
wirelength needs to be normalised per net basis. With reference
to Equations 11a and 11b for Wt and Ht respectively, this is
achieved by normalising the value against the initial conditions,
w0 and h0, and the best known historical values, we and he. The
former establishes a baseline against which the agent’s actions

can be rewarded. The latter represents the best historically
known HPWL and EW for each net in a circuit netlist. These
values may be extracted from human-generated layouts, or
ballpark figures can be identified by performing a few episodes
before training. In both scenarios, as the policy learns, better
values for these parameters are identified until reaching near-
optimal ones, which is when the reward signal will more
accurately gauge the agent’s performance. In other words, the
policy will iteratively self-improve to an adapting reward signal.

Wt = clip

(
w0 − wt

w0 − we
,−1, 1

)
(11a)

Ht = clip

(
h0 − ht

h0 − he
,−1, 1

)
(11b)

Ot =
1

8

7∑
i=0

POi (11c)

D. Dataset

We construct a dataset of nine unique seed circuits, each
containing three to twelve components, and constrained to a
board area of 400mm2. The circuits are derived from real-
world designs and contain analog, mixed-signal and digital
topologies. The training dataset MT consists of six circuits,
and the remainder comprises the unseen testing dataset, MU .
To the best of our knowledge, no publicly available PCB circuit
dataset exists for physical design. All circuits are provided in
KiCAD PCB format.

E. Experiments and Setup

We conduct several experiments to understand the effects of
emphasising different aspects of the reward signal by adjusting
the weights of EW, HPWL and overlap. In addition, we perform
ablation tests by removing one of the wirelength terms (i.e. n =
0 or m = 0). Table I lists the configurations of the experiments,
where each is executed four times using different seed values,
deterministically derived from a user defined value arbitrarily
set to 99. We report the average return and standard deviation
computed for each experiment over all successful trials.

Policy optimisation is performed using advanced RL al-
gorithms, notably Twin Delayed Deep Deterministic Policy
Gradient (TD3) [6], which reduces overestimation bias through
a dual Q-network, and Soft Actor-Critic (SAC) [7], known for
balancing return and entropy for better exploration. To adapt
to a changing reward signal, we employed a resizable replay
buffer, initially set to a size of 25,000, that doubles after accu-
mulating samples equal to twice its size. This strategy operates
under the assumption that, in the initial phases, the reward
signal is inconsistent because the policy quickly identifies better
values for the wirelength parameters we and he. Therefore, the
samples need to be recycled quickly. As the policy improves,
the reward signal becomes stable, and the replay buffer size
increases to accommodate more samples to learn from. The
policy and Q network consist of a two-layer neural network
with 400 and 300 neurons using a ReLU activation function.
All remaining parameters default to those initially set by the
authors for TD3 and SAC. Experiments were carried out on an

Ubuntu 22.04 machine with a Core™ i7-10700K CPU, 64GB
of RAM and a GeForce GTX 1080 GPU.

F. Evaluation

To evaluate, a random placement based on circuits in the
unseen dataset MU is generated and optimised separately using
our policies and a simulated annealing placer, SA-PCB [12],
over 500 steps. The optimised layouts are then routed using
PcbRouter [13] with an A* routing algorithm, and the resulting
post-routing wirelength is measured. This metric is preferred
over estimates such as HPWL and EW since it considers the
impact of placement quality on the routing process and potential
issues like congestion. We run up to four trials on every circuit
in MU for every configuration and then calculate the average
post-routing wirelength. SA-PCB runs for 500 iterations, while
PcbRouter is assigned a high layer change cost of 100, forcing
single-layer routing and ten rip-up and reroute iterations to
identify an optimised route. Defaults are otherwise assumed.

V. EXPERIMENTAL RESULTS

Table I summaries the average returns from all experiments,
with configurations 1-4 further depicted in Figure 2. During
a typical training process, the agent initially incurs substantial
negative rewards, primarily from moving components outside
the board region, leading to early episode termination. However,
a notable improvement in the agent’s performance is observed
between 25k and 75k steps, as it quickly learns to stay within
the board boundaries. This learning phase is marked by a
sharp increase in rewards. Subsequently, the agent develops
more complex behaviours for optimising the circuit layout, as
indicated by a gradual, less steep rise in reward accumulation.
This progression suggests that the agent not only masters
the fundamental rules but also starts to grasp more nuanced
strategies for maximising rewards that are aligned with our
placement directives. Eventually, the reward signal stabilises,
indicating a plateau in the learning curve.

The values in Table I reveal that SAC outperforms TD3 by
over 10% in configurations that emphasise HPWL (reflected
in the m coefficient). Conversely, TD3 shows a marginal
advantage on configurations that prioritise EW (indicated by
the n coefficient) and a greater advantage on configurations
focused on minimising overlap (denoted by the p coefficient).
SAC’s better performance on a reward signal with a non-
differential HPWL term and its lower variance during training
can be attributed to its superior ability to maximise search space
exploration and lower sensitivity to random initial conditions.

Table II summarises the routed wirelength resulting from
optimising circuits in the MU test dataset using the best poli-
cies, and the percentage improvement over SA-PCB baseline
is recorded for both TD3 and SAC. In experimental setups
that prioritise wirelength over overlap, the evaluation may not
generate overlap-free results for all runs, and in such cases, the
next best layout is selected, allowing for up to 10% overlap.
This constraint is relaxed because future work can include a
legalisation post-processing task to resolve minor overlaps. The
average is computed over up to four evaluations.

(a) Emphasise EW (b) Emphasise HPWL (c) Emphasise Overlap (d) Emphasise Wirelength

Fig. 2: Average return for distinct policy training runs corresponding to experiment configurations 1-4 in Table I. All experiments
are performed four times each initialised with deterministic random seed values. A moving average filter with a window of 100
samples (approximately 20,000 steps) smoothens the chart.

Configuration TD3 SAC % SAC

1 n=6,m=2,p=2 739.09 ± 354.98 750.20 ± 242.47 1.48%
2 n=2,m=6,p=2 715.00 ± 302.43 796.23 ± 270.45 10.2%
3 n=2,m=2,p=6 623.46 ± 272.96 612.65 ± 262.53 -1.77%
4 n=4,m=4,p=2 692.81 ± 348.48 743.65 ± 305.53 6.84%

5 n=0,m=5,p=5 510.22 ± 283.69 578.16 ± 232.07 11.75%
6 n=0,m=2,p=8 825.32 ± 257.57 780.23 ± 246.30 -5.78%
7 n=0,m=8,p=2 632.36 ± 366.32 720.11 ± 331.52 12.19%
8 n=5,m=0,p=5 729.98 ± 326.45 712.74± 367.55 -2.42%
9 n=2,m=0,p=8 1007.95 ± 294.59 942.54 ± 248.74 -6.94%

10 n=8,m=0,p=2 812.94 ± 366.38 802.84 ± 356.93 -1.26%

TABLE I: Average return and standard deviation over a maxi-
mum of four trials, for each experiment configuration.

Configuration TD3 % TD3 SAC % SAC
MU0 MU1 MU2 MU0 MU1 MU2

1 n=6,m=2,p=2 30.8 13.3 54.8 15.9% 30.9 13.9 55.3 14.3%
2 n=2,m=6,p=2 29.3 14.1 50.4 +17.4% 34.5 10.6 51.7 21.1%
3 n=2,m=2,p=6 36.7 16.2 63.8 -0.1% 40.9 15.6 62.3 -2.0%
4 n=4,m=4,p=2 27.9 14.2 56.1 15.7% 36.4 12.9 51.4 13.9%

5 n=0,m=5,p=5 45.0 15.9 61.8 -5.6% 38.1 15.6 59.6 2.0%
7 n=0,m=2,p=8 44.9 15.6 86.0 -15.4% 59.6 16.3 73.8 -24.5%
6 n=0,m=8,p=2 29.0 15.5 46.0 16.0% 28.7 15.2 50.8 15.0%
8 n=5,m=0,p=5 35.5 16.9 64.4 -1.3% 36.1 15.5 61.3 3.3%
9 n=8,m=0,p=2 32.7 15.5 42.7 14.3% 29.3 15.1 58.4 11.3%

10 n=2,m=0,p=8 43.2 15.4 71.5 -7.1% 48.3 16.4 71.7 -14.0%

SA-PCB 38.9 13.3 75.3 38.9 13.3 75.3

TABLE II: Post-routing wirelength generated by the best policy
for each configuration averaged over a maximum of four trials,
compared with layouts generated with SA-PCB using default
settings. All wirelength values are generated by PcbRouter [13].

The results of the first four configurations suggest that
policies prioritising overlap tend to produce layouts with higher
wirelength but have a greater likelihood of generating overlap-
free results while yielding roughly the same wirelength as
SA-PCB. Placing more emphasis on HPWL generates layouts
with lower wirelength than SA-PCB. In particular, the second
configuration (n = 2,m = 6, p = 2) trained with SAC
outperformed SA-PCB on all unseen layouts, resulting in an
average wirelength reduction of 21.1%, while TD3 on the same
configuration achieved a slightly lower improvement of 17.4%.
Configurations 1-4 tend to meet and exceed the performance of
SA-PCB, regardless of whether they were trained with TD3 or
SAC. Policies generated from ablation experiments (m = 0 or

n = 0) that assign increased weight to overlap are significantly
outperformed by SA-PCB. In contrast, policies trained by both
TD3 and SAC that prioritise HPWL (n = 0,m = 8, p = 2), on
average, outperformed SA-PCB by 16% and 15%, respectively,
and those that prioritise EW (n = 8,m = 0, p = 2) by 14.3%
and 11.3%, respectively. Promoting collaborative behaviours by
rewarding HPWL generates better post-routing wirelength, as
components tend to have nets spanning more than two pins.

VI. POLICY ANALYSIS

Qualitative analysis is presented in this section by tracing
the key steps from random initialisation until the optimised
layout emerges. For circuit MU0, the initial placement for a
policy greedily optimising HPWL (n = 0,m = 8, p = 2) is
shown in 3a. While the components quickly move towards the
anchoring IC in 3b, the result is a poor placement that requires
drastic changes before yielding an optimised layout. Several
swaps occur reaching 3c that require the agents involved to tem-
porarily undergo a sequence of actions that yield low rewards
until a better placement is reached. Examples of such moves
require circling around neighbouring components, temporarily
increasing wirelength, or exchanging positions while tolerating
some overlap. This process is repeated a couple of times for
components in the marked clusters to exchange their position
over the next 325 steps, which is when the final placement
emerges in Figure 3d. The placement yielded by SA-PCB is
depicted in Figure 3e, and while component clusters emerge,
the placement is not optimised, evident from the poor placement
of clusters residing at the top-left and centre-right of the layout.

In a different scenario, an initial placement for a neutral
policy (n = 0,m = 5, p = 5) is shown in Figure 3f. The
components quickly divide into two groups depending on their
connections to the main IC, as Figure 3g shows. Subsequent
moves evolve into a single large cluster linked by the dominant
multi-pin net and several smaller ones. After just 29 steps,
the final placement resembles its final positioning, as depicted
in the terminal state by Figure 3i. Circuit MU2 provides a
challenging scenario because most components simultaneously
form part of a large cluster and multiple smaller ones. SA-PCB,
in general, performs poorly on this circuit, as demonstrated
by Table II. Moreover, after 500 invocations, the layout shows
that the placement is divided between optimising for the large

(a) MU0 step 0/500 (b) MU0 step 16/500 (c) MU0 step 25/500 (d) MU0 step 500/500 (e) MU0 with SA-PCB

(f) MU2 step 0/500 (g) MU2 step 14/500 (h) MU2 step 29/500 (i) MU2 step 500/500 (j) MU2 with SA-PCB

Fig. 3: Policy behaviour analysis. 3a-3d illustrate key moments when optimising layout MU0 using a policy emphasising HPWL
(n = 0,m = 8, p = 2). Alongside it in 3e is the result from SA-PCB starting from the same initial conditions. Similarly, 3f-3i
show layout MU2 being optimised with a neutral policy (n = 0,m = 5, p = 5) alongside the result by SA-PCB in 3j.

cluster and the individual smaller ones, resulting in a placement
of relatively low quality. These examples suggest that guiding
actions based on experience yields both quicker and better
results over blind attempts with the hope of improving quality.

VII. CONCLUSION

As ML is integrated into EDA workflows, methods that
robustly leverage experience for solving physical design tasks
become increasingly valuable for AI-assisted flows or no-
human-in-loop design. Our novel methodology formulated the
iterative component placement task as an MDP and used RL
for optimising layouts end-to-end. We collected diverse training
data by allowing all components in the netlist to contribute
different perspectives and guided by an adaptive reward signal
learned general policies. Our results demonstrated competitive
performance compared to simulated annealing on post-routing
wirelength, and the learned policies showed a good under-
standing of the task dynamics. Although further optimisations
and key features are necessary, this work opens up promising
avenues for future research towards automating PCB placement.

REFERENCES

[1] B. Khailany et al., “Accelerating Chip Design With Machine Learning,”
IEEE Micro, vol. 40, no. 6, pp. 23–32, Nov. 2020.

[2] I. L. Markov, J. Hu, and M.-C. Kim, “Progress and Challenges in VLSI
Placement Research,” Proc. IEEE, vol. 103, no. 11, pp. 1985–2003, Nov.
2015.

[3] A. Alexandridis, E. Paizis, E. Chondrodima, and M. Stogiannos, “A
particle swarm optimization approach in printed circuit board thermal
design,” ICA, vol. 24, no. 2, pp. 143–155, Mar. 2017.

[4] T. Badriyah, F. Setyorini, and N. Yuliawan, “The implementation of
Genetic Algorithm and Routing Lee for PCB design optimization,” in
2016 International Conference on Informatics and Computing (ICIC),
Mataram, Indonesia: IEEE, 2016, pp. 148–153.

[5] P. Ning, H. Li, Y. Huang, and Y. Kang, “Review of power module
automatic layout optimization methods in electric vehicle applications,”
Chin. J. Electr. Eng., vol. 6, no. 3, pp. 8–24, Sep. 2020.

[6] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in International conference on machine
learning, 2018, pp. 1587–1596.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochas-
tic actor,” in International conference on machine learning, 2018, pp.
1861–1870.

[8] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep Learning Toolkit-Enabled GPU Acceleration for Modern
VLSI Placement,” in Proceedings of the 56th Annual Design Automation
Conference 2019, Las Vegas NV USA: ACM, Jun. 2019, pp. 1–6.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simu-
lated Annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[10] Q. Xu et al., “GoodFloorplan: Graph Convolutional Network and
Reinforcement Learning-Based Floorplanning,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no.
10, pp. 3492–3502, Oct. 2022.

[11] A. Mirhoseini et al., “A graph placement methodology for fast chip
design, Nature, vol. 594, no. 7862, pp. 207–212, 2021.

[12] C. Holtz, D. J. Merrill, and M. Woo, SA-PCB: Simulated Annealing-
based Placement For PCB Layout. GitHub, 2020. [Online]. Available:
https://github.com/The-OpenROAD-Project/SA-PCB

[13] T.-C. Lin, C. Holtz, Yenyi, and D. J. Merrill, The OpenROAD Project -
Printed Circuit Board (PCB) router. GitHub, 2020. [Online]. Available:
https://github.com/The-OpenROAD-Project/PcbRouter

[14] P. Makeev, “Two-level algorithm for automated placement of elements on
a flex-rigid printed circuit board,” in 2021 International Conference on
Electrotechnical Complexes and Systems (ICOECS), 2021, pp. 196–201.

[15] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-
complete graph problems,” Theoretical Computer Science, vol. 1, no. 3,
pp. 237–267, 1976.

[16] C. Boutilier, “Planning, learning and coordination in multiagent decision
processes,” in TARK, 1996, vol. 96, pp. 195–210.

[17] Y.-H. Huang et al., “Routability-Driven Macro Placement with Embedded
CNN-Based Prediction Model,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2019, pp. 180–185.

[18] C.-K. Cheng, A. B. Kahng, S. Kundu, Y. Wang, and Z. Wang, Assessment
of Reinforcement Learning for Macro Placement. 2023.

	Introduction
	Background
	Related Work
	Method
	Observations
	Actions
	Rewards
	Dataset
	Experiments and Setup
	Evaluation

	Experimental Results
	Policy Analysis
	Conclusion
	References

